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Abstract. We consider spin accumulation at a ferromagnet–normal metal interface in the presence of
magnetic scattering in the normal metal. In the classical regime, we discuss the inverse Drude scaling of
the conductance as a function of the interface transparencies. We present a treatment based on an exact
solution of the Boltzmann equation. In the quantum regime, we solve a single impurity “spin-flip Fabry
Perot interferometer” for quantum coherent multiple scatterings, in which we find a resonance in the spin
flip channels. This resonance appears to be the quantum analog of the semi classical inverse Drude scaling
of the conductance.

PACS. 72.10.Bg General formulation of transport theory – 75.70.-i Magnetic films and multilayers

1 Introduction

The discovery of the Giant Magneto Resistance (GMR)
in magnetic multilayers [1–3] has generated an important
interest. These systems are made of a sandwich of alter-
nating ferromagnetic and non magnetic layers. Valet and
Fert proposed a semi classical description of the perpen-
dicular GMR, on the basis of a Boltzmann equation in-
corporating a spin-dependent transport in the presence
of spin accumulation [4] (see also [5]). Spin accumulation
occurs in the GMR because the current arising from a
ferromagnet is spin polarized, and therefore cannot pen-
etrate a ferromagnet with an opposite magnetization. In-
stead, spin accumulates at the interface. This phenomenon
occurs also at the interface between a ferromagnet and
a superconductor, where a spin polarized current cannot
penetrate the superconductor [6–8]. Here, we would like
to reconsider two particular aspects of spin accumulation,
namely, (i) in the semi classical regime, the possibility of
an inverse Drude scaling of the conductance meaning that,
in some parameter range, the conductance increases with
the length of the conductor; and (ii) in the quantum co-
herent regime, the existence of a resonance in the spin flip
channels. More precisely, we study a ferromagnet – normal
metal – ferromagnet spin valve, in which we assume the
presence of magnetic scattering in the normal metal [9,10].
The inverse Drude scaling resulting from spin accumula-
tion is already implicitly contained in the equations ob-
tained by Valet and Fert [4], but, to our knowledge, this
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effect has not been studied previously per se in the liter-
ature, which we do here. Spin accumulation corresponds
to the presence of a different chemical potential for the
spin-up and spin-down electrons, which obey a spin diffu-
sion equation [4,11,12]. Our treatment is not based on the
spin diffusion equation, but relies on an exact solution of
the 1D Boltzmann equation where we can make an exact
decoupling between the charge and spin sectors.

Next, we ask to what extend a quantum model can
show a similar physics. We are lead to study a quantum
“spin-flip Fabry Perot” interferometer in which a single
magnetic impurity is located at a given distance a away
from a ferromagnet interface. We find the existence of a
Fabry-Perot resonance in the spin-flip channels as the pa-
rameter a is varied. This resonance disappears as the fer-
romagnet spin polarization is decreased, and can therefore
be viewed as the equivalent of the inverse Drude behavior
in the quantum coherent regime. Our treatment is based
on a Landauer approach, similar to the one used by Zhu
and Wang to study the effect of magnetic scattering close
to a superconductor interface [13].

The article is organized as follows. Section 2 is devoted
to the solution of the semi classical transport equations.
We solve the “spin-flip Fabry Perot” interferometer model
in Section 3. Final remarks are given in the conclusion.

2 Transport in the semi classical regime

2.1 Boltzmann equation and boundary conditions

We consider a model in which magnetic impurities are
present in a normal metal close to a ferromagnet inter-
face (see Fig. 1). We neglect any Kondo correlation [14],
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Fig. 1. The “spin valve” geometry considered in Section 2,
consisting of a normal metal wire doped with magnetic impu-
rities, connected to two ferromagnets with an opposite magne-
tization.

which is an assumption valid above the Kondo tempera-
ture. The presence of the ferromagnets close to the normal
metal may lead to magnetic flux lines penetrating inside
the normal metal, which can orient the magnetic impuri-
ties in a preferential direction. We implicitly assume that
the temperature is high enough so that the impurities have
no preferential orientation. We consider a one-dimensional
model because only in this geometry can we decouple the
spin and charge sectors of the Boltzmann equation. We as-
sume that the interfaces between the ferromagnets and the
normal metal are sharp, and that the exchange field has a
step function variation at the interface. We note fσR,L(E, x)
the semi classical distribution function of right/left mov-
ing spin-σ electrons with an energy E at position x.

The Boltzmann equation in the relaxation time ap-
proximation reads

see equation (1) above
where we have discarded the term involving the electric
field. This is valid if the temperature of the electrodes is
larger than the applied voltage, in which case the elec-
tronic gas has a temperature identical to the one of the
electrodes [15,16]. Therefore, we should consider a finite
temperature and calculate the low voltage conductance in
the regime eV � T . In practise, we consider the limit
T → 0, and calculate the linear conductance. The coeffi-
cients r, rs and r′s in equation (1) denote respectively the
rate of backscattering without spin-flip, the rate of for-
ward scattering with spin-flip, and the rate of backward
scattering with spin-flip. The coefficients can be related
to the q = 0 and q = 2kf components of the microscopic
scattering potential (see the Appendix).

We now explicit the boundary conditions. For this pur-
pose, let us consider an interface between a ferromagnet
in the region x < 0 and a normal metal in the region
x > 0, and include interface scattering under the form
of repulsive potential Hδ(x) [17]. Let us first consider
a spin-up electron incoming from the left ferromagnet,

and denote by b↑ and t↑ the backscattering and transmis-
sion coefficients. The wave function in the region x < 0
is ψL(x) = exp (ik↑x) + b↑ exp (−ik↑x), and the wave
function in the region x > 0 is ψR(x) = t↑ exp (ikx).
The matching equations are ψL(0) = ψR(0) = ψ(0) and
∂ψR(0)/∂x− ∂ψL(0)/∂x = (2mH/~2)ψ(0), from what we
deduce

t↑ =
2ik↑

i(k + k↑)− 2mH/~2
, and b↑ =

i(k↑ − k) + 2mH/~2

i(k + k↑)− 2mH/~2
·

The probability current conservation can be verified easily:
k↑ = k↑|b↑|2 +k|t↑|2. The spin-up conductance is found to
be G↑ = (e2/h)|T ↑|2, with the transmission coefficient

T ↑ =
k

k↑
|t↑|2 =

4kk↑

(k + k↑)2 +
[

2mH
~2

]2 · (2)

The backscattering coefficient is B↑ = 1−T ↑. In the spin-
down sector, we obtain T ↓ and B↓ by substituting k↑ with
k↓ in equation (2). This provides the boundary conditions
for the Boltzmann equation:

f↑R(E, 0) = T ↓fT (E − eV ) + (1− T ↓)f↑L(E, 0) (3)

f↓R(E, 0) = T ↑fT (E − eV ) + (1− T ↑)f↓L(E, 0) (4)

f↑L(E,L) = T ↑fT (E) + (1− T ↑)f↑R(E,L) (5)

f↓L(E,L) = T ↓fT (E) + (1− T ↓)f↓R(E,L), (6)

where the left and right ferromagnets are assumed to be in
equilibrium and fT (E) denotes the Fermi-Dirac distribu-
tion function. We consider T ↑ and T ↓ to be independent
of energy, which amounts to considering the wave vec-
tors k and k↑ in equation (2) to be on the Fermi surface.
Equations (3–6) provide a simple form for the spin-up and
spin-down currents at positions x = 0, L. For instance at
x = L, we have

I↑(L) = T ↑
e

h

∫ [
f↑R(E,L)− fT (E)

]
dE (7)

I↓(L) = T ↓
e

h

∫ [
f↓R(E,L)− fT (E)

]
dE. (8)

The Boltzmann equation (1) and the boundary conditions
equations (3–6) lead to eight equations for eight variables
f↑,↓R,L(E, x = 0, L). We now solve these equations directly
and discuss their physics.

2.2 Solution of the Boltzmann equation

The 4× 4 Boltzmann equation can block diagonalized into
2 × 2 blocks by changing variables to the charge and spin
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p
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combinations XR,L = f↑R,L + f↓R,L and YR,L = f↑R,L− f
↓
R,L.

This spin-charge decoupling allows to solve exactly the
Boltzmann equation. We find

∂

∂x

(
XR

XL

)
=

1
l

(
−1 1
−1 1

)(
XR

XL

)
,

and
∂

∂x

(
YR

YL

)
=
(
−a b
−b a

)(
YR

YL

)
, (9)

with l = 1/(r+ r′s) the mean free path, and a = r+ 2rs +
r′s, b = r − r′s. The 2 × 2 block equations can be easily
integrated to obtain(

XR(L)
XL(L)

)
=
(

1− x x
−x 1 + x

)(
XR(0)
XL(0)

)
, (10)

with x = L/l. Similarly,(
YR(L)
YL(L)

)
= T̂

(
XR(0)
XL(0)

)
, with T̂ =

(
t u
−u t

)
, (11)

where t = cosh (λL) − α sinh (λL), t = cosh (λL) +
α sinh (λL), and u = β sinh (λL). We used the notation
α = a/λ, β = b/λ, and λ =

√
a2 − b2. Next, we combine

the boundary conditions equations (3–6) to equation (10)
to obtain an expression for f↑R(E, 0) − f↓R(E, 0) and
f↑L(E, 0)−f↓L(E, 0) as a function of f↑R(E,L) and f↓R(E,L).
Once injected into equation (11), these relations lead to

M̂

(
f↑R(E,L)
f↓R(E,L)

)
= 2fT (E − eV )T̂

(
T ↑ + T ↓ − 2T ↑T ↓

T ↑ + T ↓

)
− fT (E)

{
(T ↑ + T ↓)T̂

×
(

2(T ↑ + T ↓ − T ↑T ↓ − 1)− x(T ↑ + T ↓ − 2T ↑T ↓)
−2 + T ↑ + T ↓ − x(T ↑ + T ↓)

)
− (T ↑ − T ↓)2

(
0
1

)}
. (12)

The matrix M̂ appearing in the left hand side of
equation (12) is

M̂ = T̂

(
A↑ A↓

B↑ B↓

)
+ (T ↑ − T ↓)

(
−1 1

−1 + T ↑ 1− T ↓
)
,

(13)

with the coefficients

A↑ = 3T ↑ − 4T ↑T ↓ + T ↓ − 2(T ↑)2 + 2(T ↑)2T ↓

+ xT ↑
[
T ↑ − 2T ↑T ↓ + T ↓

]
(14)

B↑ = 3T ↑ + T ↓ − (T ↑)2 − T ↑T ↓ + x
[
(T ↑)2 + T ↑T ↓

]
.

(15)

The expression of A↓ is obtained by exchanging T ↑ and
T ↓ in equation (14). Similarly, B↓ is obtained from B↑ by
exchanging T ↑ and T ↓ in equation (15).

2.3 Fully polarized limit

We first consider the solution equation (12) in the case of
fully polarized ferromagnets with high transparency con-
tacts: H = 0, k↓ = T ↓ = 0, k↑ = k, leading to T ↑ = 1. In
this limit, only a spin-up current can enter the ferromag-
net at x = L. This is expected on physical grounds, and it
can be verified explicitly on the form equation (8) of the
spin-down current. The total current is found to be

see equation (16) above
where we considered only the forward scattering spin flip
processes (r′s = 0), and assumed that rs � r, in which
case the elastic mean free path l = 1/r is much below
the spin-flip length lsf = 1/[2

√
rs(rs + r)]. If L is small

compared to lsf , the conductance G ∼ 2 e
2

h rsL shows an
inverse Drude behavior.

2.4 Spin polarization profile

The spin polarization profile in the diffusive wire can be
calculated in a straightforward fashion from the solution
of the Boltzmann equation. Once we know the distri-
bution functions at one extremity of the wire, we can
use equations (9) to propagate the solution to an arbi-
trary point. The resulting spin polarization inside the wire
is proportional to the applied voltage, and is shown in
Figure 2 for various values of L. When L > lsf , there is a
plateau in the spin polarization in the middle of the wire.
In the opposite inverse Drude regime, there is no such
plateau.

2.5 Effect of a partial spin polarization

Now, we consider the effect of a partial spin polarization in
the ferromagnet. It is expected on physical grounds that a
decreasing spin polarization tends to suppress the inverse
Drude scaling because this regime is clearly absent in the
spin unpolarized case. This is visible in Figure 3 where we
plotted the conductance as a function of the length of the
diffusive wire for decreasing spin polarizations. With an
arbitrary polarization, there exists a critical length scale
Lc such that the conductance increases with L below Lc,
and decreases with L above Lc. There exists also a critical
value of T ↓ such that Lc = 0 if T ↓ > T ↓c . To illustrate this,
we have shown in Figure 4 the variations of the critical
length Lc as a function of the parameter T ↓. When T ↓
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T ↑ = 0.9, r = 0.1 and rs = 0.01. With a strong spin polar-
ization, the conductance increases with L below Lc. With a
weak spin polarization, the conductance decreases monotoni-
cally with L (Lc = 0).

increases, Lc decreases: the maximum in G(L) occurs for
a smaller Lc. When T ↓ is above a critical value T ↓c , the
conductance decreases monotonically with L.

We now describe the effect of a partial spin polariza-
tion on the basis of a small-T ↓ expansion. The strategy is
to express the current to order L and determine whether
the conductance increases or decreases with L. We expand
the current to first order in the two parameters K = λL
and x = L/l, and retain the coefficients of this expansion
to leading order in T ↓. It is first instructive to carry out
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eters r = 0.1 and rs = 0.01. With a given T ↑, the curve Lc(T

↓)
separates two regions: (i) small-L, small-T ↓: the conductance
increases with L; and (ii) large-L, large-T ↓: the conductance
decreases with L.

the expansion with L = 0, and therefore K = x = 0.
It is visible on equations (7, 8) that a prefactor T ↑ en-
ters the spin-up current, and a prefactor T ↓ enters the
spin-down current. We should then express f↑R(E,L) to
first order in T ↓ while f↓R(E,L) should be expressed to
order (T ↓)0. The spin-up and spin-down channels appear
to play an asymmetric role. Nevertheless, the final expres-
sion of the conductance is identical in the spin-up and
spin-down channels. An intermediate step in the calcula-
tion of f↑R(E,L) is the derivation of DetM̂ to order T ↓
(see Eq. (13)):

DetM̂ = −4(T ↑)3

{
1− T ↓

(
2T ↑ − 1
T ↑

)}
,

leading to an identical current in both spin channels:

I↑ = I↓ = T ↓
e

h

∫
[fT (E − eV )− fT (E)] dE.

Now we consider a diffusive wire with a finite length L,
and expand the current to first order in x and K, and to
leading order in T ↓. The determinant of the matrix M̂ in
equation (12) is found to be

DetM̂ = −4(T ↑)3

{
1− T ↓

(
2T ↑ − 1
T ↑

)}
− 4(T ↑)2(α− β)(2− T ↑)K − 4x(T ↑)2T ↓.
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Next we expand the spin-up current to order L to obtain

I↑ =
−4(T ↑)3

DetM̂

(
T ↓ − (α − β)K

)
'

T ↓
[
1 +K

α− β
T ↓

− xT
↓

T ↑

]
.

If T ↓ is small, the current increases with L while it de-
creases with L if T ↓ is large. The transition between these
two behaviors is obtained for T ↓c =

√
(2rs/r)T ↑, compat-

ible with the behavior shown in Figure 4.

2.6 Replacement of one of the ferromagnets
by a normal metal

We now consider the situation where we replace the left-
hand-side ferromagnet in Figure 1 by a normal metal. In
the presence of high transparency contacts, the conduc-
tance of this junction is of order e2/h in the absence of
diffusion while it is of order (e2/h)T ↓ in the spin valve ge-
ometry in Figure 1. Replacing one of the ferromagnets by
a normal metal is expected to suppress the inverse Drude
scaling. The boundary conditions appropriate to describe
this situation are

f↑R(E, 0) = TfT (E − eV ) + (1− T )f↑L(E, 0) (17)

f↓R(E, 0) = TfT (E − eV ) + (1− T )f↓L(E, 0) (18)

f↑L(E,L) = T ↑fT (E) + (1− T ↑)f↑R(E, 0) (19)

f↓L(E,L) = T ↓fT (E) + (1− T ↓)f↓R(E, 0), (20)

that should be solved together with equations (9). The
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nected to a normal metal and a ferromagnet, with low trans-
parency contacts: T = 0.01, and T ↑ = 1. A regime with a
conductance increasing with the length of the diffusive wire is
visible for small values of the parameter T ↓.

solution is found to be

N̂

(
f↑R(E,L)
f↓R(E,L)

)
=
(

(T ↑ + T ↓)(1− T + xT )
(T ↑ − T ↓)(u+ t(1− T ))

)
× fT (E) + 2T

(
1
0

)
fT (E − eV ),

with

N̂ =
(
C↑ C↓

D↑ −D↓
)
,

and

C↑ = T + T ↑ − TT ↑ + xTT ↑ (21)

D↑ = t− u(1− T )− (1− T ↑)(t(1− T ) + u). (22)

We have plotted in Figure 5 the conductance of the junc-
tion with high transparency contacts, where it is visible
that the conductance decreases monotonically with the
length of the diffusive wire.

Now, reducing the contact transparency restores a
regime in which the conductance increases with the size
of the diffusive wire. This is visible in Figure 6 where we
used T = 0.01 and T ↑ = 1. Again, the inverse Drude scal-
ing is obtained for the smallest values of T ↓ (with strongly
polarized magnets).

3 Quantum coherent transport: a single
magnetic impurity “spin-flip Fabry Perot
interferometer”

3.1 Matching equations

We now consider a single magnetic impurity at x = 0 in a
normal metal, in the presence of a normal metal – ferro-
magnet interface at x = a (see Fig. 7). The purpose of this
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Fig. 7. The system considered in Section 3. The impurity is in
the normal metal at a distance a away from the ferromagnet.
We have represented a quasi one-dimensional geometry while
the calculation is made in a one-dimensional geometry.

calculation is to study a model in which the interplay be-
tween multiple reflections and phase coherence is treated
exactly, and to determine whether there exists a signature
of spin accumulation in the quantum coherent regime. We
find that the quantum model behaves like a Fabry Perot
interferometer, with a resonance in the spin flip channels.
This can be viewed as the signature of spin accumulation
in the quantum coherent regime. We neglect the Kondo ef-
fect because we want to describe a situation in which the
temperature is above the Kondo temperature. The con-
duction electrons are scattered through the Hamiltonian
H = V0 +V1Si · s, where Si is the impurity spin and s the
spin of the conduction electron, and we further assume a
single channel geometry. This type of model has been used
by Zhu and Wang [13] to investigate the effect of a mag-
netic impurity close to a normal metal – superconductor
interface. The spin-up and spin-down wave functions are
grouped in a two-component spinor ψ̂(x). Clearly, the im-
purity couples the spin-up and spin-down wave functions.
The matching of the wave function at the impurity site
reads

ψ̂(0+) = ψ̂(0−),

and
∂ψ̂

∂x
(0+)− ∂ψ̂

∂x
(0−) =

2m
~2

[
λ1̂ + µσ̂x

]
ψ̂(0), (23)

with λ = V0 − V1/4 and µ = V1/2. The matching of the
wave function at the ferromagnet boundary reads

ψ̂(a+) = ψ̂(a−), and
∂ψ̂

∂x
(a+)− ∂ψ̂

∂x
(a−) =

2m
~2
Hψ̂(a),

(24)

where we included a repulsive interface potential Hδ(x−
a) at the normal metal–ferromagnet interface. Equa-
tions (23, 24) generate eight constraints, for a set of eight
transmission coefficients.

This calculation amounts to a resummation to all or-
ders of a series of diagrams in which a conduction electron
scatters onto the impurity, scatters back onto the inter-
face, scatters again onto the impurity, ... (see Fig. 8a).
Note that the diagram with a hole in the intermediate
state shown in Figure 8b generates another series which is
not included in the calculation. If one wanted to describe
the Kondo effect close to a ferromagnet interface, it would
be crucial to incorporate the diagram in Figure 8b, as well
as inserting the interface scattering in this diagram.

(a)

(b)

Fig. 8. (a) The processes included in the Landauer calculation.
The wavy lines indicate the scattering at the interface; and (b)
A process with a hole in the intermediate state, not included
in the calculation.

3.2 Scattering in the total spin Sz = 0 sectors

3.2.1 Incoming electron with a spin-up

We first consider a spin-up electron incoming on the in-
terface while the impurity is supposed to have initially a
spin down. The wave functions are

ψ̂e↑i↓ (x) =
(

1
0

)
eikx +

(
be↑→e↑i↓
be↑→e↓i↓

)
e−ikx if x < 0. (25)

ψ̂e↑i↓ (x) =
(
α
α′

)
eikx +

(
β
β′

)
e−ikx if 0 < x < a. (26)

ψ̂e↑i↓ (x) = te↑→e↑i↓

(
1
0

)
eik↑x + te↑→e↓i↓

(
0
1

)
eik↓x if x > a,

(27)

where k↑ and k↓ denote the spin-up and spin-down Fermi
wave vectors in the ferromagnet. In the notation of the
transmission coefficients, the superscript denotes the ini-
tial and final spin orientations of the conduction elec-
tron while the subscript denotes the initial orientation of
the impurity. The solution of the matching equations is
straightforward, and we find the transmission coefficients

te↑→e↑i↓ =
1
DA↑

[
A(1 + iz)X↓ +AizY ↓

]
(28)

te↑→e↓i↓ = − 1
DA↓ iz′

[
AX↑ +AY ↑

]
. (29)

We used the notation Xσ = 1
2 + iZ + Z

2Zσ , Y σ =
1
2 −

(
iZ + Z

2Zσ

)
, A = exp (ika), Aσ = exp (ikσa). The

dimensionless scattering potentials in equations (28, 29)
are z = mλ/(~2k) and z′ = mµ/(~2k) at the impurity
site, and Z = mH/(~2k), Zσ = mH/(~2kσ) at the nor-
mal metal – ferromagnet interface. The denominator D
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in equations (28, 29) is

D = X↑X↓(A)2[1− z2 + (z′)2 + 2iz]

+ (X↑Y ↓ +X↓Y ↑)[−z2 + (z′)2 + iz]

+ Y ↑Y ↓A2[−z2 + (z′)2]. (30)

3.2.2 Incoming electron with a spin-down

We consider now an incoming electron with a spin-down
while the impurity has initially a spin-up. The wave func-
tions are

ψ̂e↓i↑ (x) =
(

0
1

)
eikx +

(
be↓→e↑i↑
be↓→e↓i↑

)
e−ikx if x < 0. (31)

ψ̂e↓i↑ (x) =
(
α′

α

)
eikx +

(
β′

β

)
e−ikx if 0 < x < a. (32)

ψ̂e↓i↑ (x) = te↓→e↓i↑

(
0
1

)
eik↓x + te↓→e↑i↑

(
1
0

)
eik↑x if x > a.

(33)

The equations for te↓→e↑i↑ and te↓→e↓i↑ are obtained from
the ones in Section 3.2.1 under the transformation A↑ ↔
A↓, and Z↑ ↔ Z↓. The amplitude for transmission in the
ferromagnet is

te↓→e↑i↑ = − 1
DA↑ iz′[AX↓ +AY ↓] (34)

te↓→e↓i↑ =
1
DA↓ [A(1 + iz)X↑ +AizY ↑]. (35)

3.3 Scattering in the total spin Sz = ±1 sectors

The incoming electron does not undergo spin-flip scatter-
ing in the sectors with a total spin Sz = ±1. The trans-
mission coefficients in the sector Sz = 1 is found to be

te↑→e↑i↑ =
1

A↑[A (1 + i(z + z′))X↑ +Ai(z + z′)Y ↑]
·

In the sector Sz = −1, we have

te↓→e↓i↓ =
1

A↓[A (1 + i(z + z′))X↓ +Ai(z + z′)Y ↓]
·

We can check easily that these forms of the transmission
coefficients are identical to equation (28), with z′ = 0,
and the replacement z → z + z′. This is expected since
there is no spin-dependent scattering in the limit z′ = 0
of equation (28).

3.4 Landauer formula

We now evaluate the total conductance and assume
that the incoming electron and impurity do not have
any preferential direction. The conductance is the sum
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Fig. 9. Spin-flip, non spin-flip, and total conductances (in
units of e2/h) of the quantum mechanical model of magnetic
scattering close to a ferromagnet interface, with an unpolarized
ferromagnet (k = k↑ = k↓ = 1) and the parameters Z = 1,
a = 100 and W0 = V0/H = 0. The conductances are plotted
as a function of W1 = V1/H.

of four terms, weighted by the probability P =
1/2 to have a spin-up or spin-down impurity: G =(
Ge↑i↓ +Ge↓i↑ +Ge↑i↑ +Ge↓i↓

)
/2, with

Ge↑i↓ =
e2

h

(
k↑

k
|te↑→e↑i↓ |2 +

Rek↓

k
|te↑→e↓i↓ |2

)
(36)

Ge↓i↑ =
e2

h

(
k↑

k
|te↓→e↑i↑ |2 +

Rek↓

k
|te↓→e↓i↑ |2

)
(37)

Ge↑i↑ =
e2

h

k↑

k
|te↑→e↑i↑ |2 (38)

Ge↓i↓ =
e2

h

Rek↓

k
|te↓→e↓i↓ |2. (39)

We have incorporated the possibility of having a pure
imaginary wave vector k↓, corresponding to an empty
spin-down band.

3.5 Resonances

We consider the presence of a strong interface scatter-
ing at the metal – ferromagnet interface. The electron are
multiply reflected before they enter the ferromagnet, and
therefore the resonator has a high quality factor. We first
choose the parameter a in such a way that spin-flip scat-
tering is resonant. As it is visible in Figures 9, 10, the
presence of a spin polarization in the ferromagnet gener-
ates a resonance in the conductance, not present in the
unpolarized situation. We have shown the conductance
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Fig. 10. Spin-flip, non spin-flip, and total conductances (in
units of e2/h) of the quantum mechanical model of magnetic
scattering close to a ferromagnet interface, with a strongly po-
larized ferromagnet (k = k↑ = 1, k↓ = 0.01) and the parame-
ters Z = 1, a = 100 and W0 = V0/H = 0. The conductances
are plotted as a function of W1 = V1/H. A resonance, not
present in Figure 9, develops in the conductance upon spin
polarizing the ferromagnet.

with V0 = 0 but a similar behavior has been obtained
with a finite V0. The values of ka for which a resonance
occurs can be worked out by calculating the transmission
coefficients in the limit of a large z, z′. In this limit, we
find

te↓→e↑i↑ = − iz′A
↑

((z′)2 − z2)
1

AX↑ +AY ↑
(40)

te↑→e↑i↓ =
izA
↑

(z′)2 − z2

1
AX↑ +AY ↑

· (41)

The resonances occur when tan (ka) = 1/(i − 2Z). For
a large Z, the resonances are close to the real axis:
tan (ka) = −1/(2Z), in agreement with Figure 11. The
reason why the resonance appear to be sharp as a func-
tion of a when Z is large is that, even without spin flip
scattering, the quality factor of such a resonator is large
when Z is large.

The occurrence of a parameter range in which a peak
occurs in the spin flip conductance is intriguing. The
presence of a specific physics in the spin flip channels
can be already understood from the large-z, z′ behav-
ior, equations (40, 41). Typically, one has |te↓→e↑i↑ |2 ∼
(z′)2/((z′)2 − z2)2 and |te↑→e↑i↑ |2 ∼ (z)2/((z′)2 − z2)2. In
the presence of spin flip scattering, one has z 6= z′ and
therefore a different conductance in the spin flip and non
spin flip channels.
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Fig. 11. Spin flip conductance of the Fabry-Perot model, as a
function of a, with k = k↑ = 1, k↓ = 0.01. As it is visible, the
conductance is a periodic function of ka with a period π. The
resonances with Z = 1 are much sharper than with Z = 0.01,
as expected on physical grounds. The resonances occur when
tan (ka) ' −1/(2Z).

4 Conclusions

To conclude, we have determined to what extend spin ac-
cumulation can result in an inverse Drude behavior in a
semi classical spin valve model. Our treatment was based
on an exact decoupling between the charge and spin sec-
tors of the Boltzmann equation. We have addressed a simi-
lar question in a single impurity quantum model and found
the existence of a resonance in the spin flip conductance.
It is an open question to determine the quantum coher-
ent behavior of a spin valve with a finite concentration of
impurities.

Appendix A: Derivation of the Boltzmann
equation with spin-flip scattering

We give a brief derivation of the Boltzmann equation (1) in
the presence of a spin-flip scattering potential. The deriva-
tion generalizes reference [18] to incorporate a spin-flip
scattering self energy. The Dyson equation in the spin ten-
sor Keldysh space reads (Ĝ−1

0 −Σ̂)(1, 2)⊗Ĝ(2) = δ(1−2).
The convolution includes a sum over coordinates, time,
and spin. The kinetic equation is obtained from the differ-
ence of the Keldysh components of the Dyson equations
and its conjugate:[
Ĝ−1

0 −ReΣ̂, ĜK
]
−
−
[
Σ̂K ,ReĜ

]
−

=

i
2

[
Σ̂K , Â

]
+
− i

2

[
Γ̂ , ĜK

]
+
, (A.1)
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Fig. 12. The self energy terms incorporated in the gradient
expansion calculation. The term shown in Figure 8b generating
the Kondo effect is not included.

with [ ]− and [ ]+ denoting a commutator and an anticom-
mutator respectively. We refer the reader to reference [18]
for an explanation of the symbols used in equation (A.1).
We use the self energy shown in Figure 12:

Σ̂σ(p,R, T ) = ni

∫
dp′

(2π)3
|v(p− p′)|2Ĝσ,σ(p′,R, T )

+ n′i

∫
dp′

(2π)3
|v′(p− p′)|2Ĝ−σ,−σ(p′,R, T ), (A.2)

with ni and n′i the concentration of non magnetic and mag-
netic impurities. The first term in equation (A.2) describes
non spin-flip scattering, and the second term describes
spin-flip scattering. Notice that this self energy does not
incorporate the Kondo effect since we do not incorporate
the possibility of a having hole in the intermediate state.

We assume the self energy in equation (A.1) to be
constant in space, and use the gradient expansion to first
order

(A⊗B)σ,σ′ (X, p) '∑
σ2

[
1 +

i
2
(
∂AX∂

B
p − ∂Ap ∂BX

)]
Aσ,σ2Bσ2,σ′ .

If A and B are symmetric in spin Aσ,σ′ = Aσ′,σ, and
Bσ,σ′ = Bσ′,σ, the commutator reduces to the usual spin-
less Poisson bracket: [A⊗B]−,σ,σ′ = i

∑
σ2
{Aσ,σ2 , Bσ2,σ},

with {A,B} = ∂AXA∂
B
p B − ∂Ap A∂

B
XB. Using these re-

lations, we expand the kinetic equation (Eq. (A.1))
and integrate over energy to obtain the Boltzmann

equation

∂T fp,σ +∇pξp∇Rfp,σ −∇RU∇pfp,σ =

2πni

∫
dp′

(2π)3
|v(p− p′)|2δ(ξp − ξp′)[fp′,σ − fp,σ]

+ 2πn′i

∫
dp′

(2π)3
|v′(p− p′)|2δ(ξp − ξp′)[fp′,−σ − fp,σ].

(A.3)

In the one-dimensional limit, equation (A.3) reduces to the
Boltzmann equation (1), with the scattering coefficients
related to the q = 0 and q = 2kf components of the
scattering potential: r = ni|v2kf |2, rs = n′i|v0|2, and r′s =
n′i|v′2kf |

2.
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